Sequestration of Martian CO2 by mineral carbonation

نویسندگان

  • Tim Tomkinson
  • Martin R. Lee
  • Darren F. Mark
  • Caroline L. Smith
چکیده

Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth's crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars' history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigations of the Mechanisms that Govern Carbon Dioxide Sequestration via Aqueous Olivine Mineral Carbonation

Coal, in particular, and fossil fuels, in general, are well positioned to supply the world’s energy needs for centuries to come if the environmental challenges associated with anthropogenic carbon dioxide emissions can be overcome. Carbon dioxide sequestration is being actively pursued as an option to reduce CO2 emissions, while still enjoying the advantages of low-cost fossil fuel energy. Mine...

متن کامل

Developing a Mechanistic Understanding of Lamellar Hydroxide Mineral Carbonation Reaction Processes to Reduce CO2 Mineral Sequestration Process Cost

The potential environmental effects of increasing atmospheric CO2 levels are of major worldwide concern. One alternative for managing CO2 emissions is carbon sequestration: the capture and secure confinement of CO2 before it is emitted to the atmosphere. Successful technologies must be environmentally benign, permanent, economically viable, safe and effective. As a result, their timely developm...

متن کامل

Carbon dioxide sequestration in cement kiln dust through mineral carbonation.

Carbon sequestration through the formation of carbonates is a potential means to reduce CO2 emissions. Alkaline industrial solid wastes typically have high mass fractions of reactive oxides that may not require preprocessing, making them an attractive source material for mineral carbonation The degree of mineral carbonation achievable in cement kiln dust (CKD) underambienttemperatures and press...

متن کامل

CO2 Mineral Sequestration Studies in US

Carbon sequestration by reacting naturally occurring Mg and Ca containing minerals with CO2 to form carbonates has many unique advantages. Most notably is the fact that carbonates have a lower energy state than CO2, which is why mineral carbonation is thermodynamically favorable and occurs naturally (e.g., the weathering of rock over geologic time periods). Secondly, the raw materials such as m...

متن کامل

Enhancing Process Kinetics for Mineral Carbon Sequestration

The current low-cost process for mineral carbonation involves the direct carbonation of a slurry of magnesium or calcium silicate mineral with supercritical CO2. The process is currently limited by the slow reaction kinetics of the carbonation reactions, and in particular the slow dissolution rates of the silicates in weakly acidic conditions. Enhancing the dissolution rate in weakly acidic con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013